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1 General metrics

DESIGN

1.General metrics: facilitates the comparisons
across different deep learning models based on
the generalized metric, Fgeneral. It provides the
ability to interactively weigh the segmentation

Data

performance between accuracy and time and
memory efficiency of the models.

.Per class analysis: compares the segmentation
learning-related metrics of CmloU and ImloU of

S
PointNet N A
N N |

Add Model -

miol) per class - Best Cmiol

Marie Sktodowska-Curie
Actions

This project has received funding from the
European Union’s Horizon 2020 research and
innovation programme under the Marie
Sklodowska-Curie grant agreement No 860843.

2 Per class analysis
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Five of the most accurate neural networks for MSEES .
3D part segmentation analysis: ——
1.PointNet,

motorbike
2. PointNet++ : 2
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ASPECT 2 In which learning epoch we could stop the training process?

och could be the point,

where the neural network achieved

a significantly high accuracy value

3.Kernel Point Convolution (KPConv)
4.Position Pooling Network (PPNet)
5.Relation Shape Convolution (RSConv).
Data light gas tank
ShapeNet data for part segmentation. seat  handle

in the test data and then its
accuracy remains in more or less
stable values.

e 16881 3D objects of point clouds
e 16 different shape categories (or classes), each one annotated with 2
to 6 parts
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Analysis Aspects

ASPECT 1
According to specific hardware resources and time constraints which
neural network model is more appropriate to use?
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A user can extract
meaningful information
on the detection of the
exact epoch to stop the
learning process of a
neural network.
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ASPECT 4

To what extent the segmentation accuracy metric values are related to the visual
representation of the results?
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Model

Generalized performance evaluation of the five selected neural networks
with parameters a=0.5 and [(3=0.5, concerning balance between
segmentation accuracy and efficiency of the deep learning models. For
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The different colours in (a), (b), (¢), (d) denote the distinct parts of the point cloud. The

colours green and red in (e) and (f) denote the correctly and incorrectly predicted points
respectively. Also, in (e) and (f), the brown circles highlight example areas that appear to
have differences between the two neural networks.
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It is somehow expected that each one of the deep learning models will .
perform better than the others in specific classes, due to differences in (H) Ground truth - PointNet. (b) Ground truth - RSConv
design characteristics. In the Figure on the right, for instance, RSConv . .
performed better than the PointNet and PointNet++ by far in "Motorbike" £ .,
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(e) Prediction error
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